Science News

Quantitative Evaluation of Optical Free Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes.

A new interesting article has been published in J Am Chem Soc. 2018 Nov 7;140(44):14619-14626. doi: 10.1021/jacs.8b05598. Epub 2018 Oct 23. and titled:

Quantitative Evaluation of Optical Free Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes.

Authors of this article are:

Bai Y, Bullard G, Olivier JH, Therien MJ.

A summary of the article is shown below:

Gauging free carrier generation (FCG) in optically excited, charge-neutral single-walled carbon nanotubes (SWNTs) has important implications for SWNT-based optoelectronics that rely upon conversion of photons to electrical current. Earlier investigations have largely provided only qualitative insights into optically triggered SWNT FCG, due to the heterogeneous nature of commonly interrogated SWNT samples and the lack of direct, unambiguous spectroscopic signatures that could be used to quantify charges. Here, employing ultrafast pump-probe spectroscopy in conjunction with chirality-enriched, length-sorted, ionic-polymer-wrapped SWNTs, we develop a straightforward approach for quantitatively evaluating the extent of optically driven FCG in SWNTs. Owing to the previously identified trion transient absorptive hallmark (Tr+11 → Tr+nm) and the rapid nature of trion formation dynamics (<1 ps) relative to established free-carrier decay time scales (>ns), we correlate FCG with trion formation dynamics. Experimental determination of the trion absorptive cross section further enables evaluation of the quantum yields for optically driven FCG [Φ(E nn→h ++e -)] as a function of optical excitation energy and medium dielectric strength. We show that (i) E33 excitons give rise to dramatically enhanced Φ(E nn→h ++e -) relative to those derived from E22 and E11 excitons and (ii) Φ(E33→h ++e -) monotonically increases from ∼5% to 18% as the solvent dielectric constant increases from ∼32 to 80. This work highlights the extent to which the nature of the medium and excitation conditions control FCG quantum yields in SWNTs: such studies have the potential to provide new design insights for SWNT-based compositions for optoelectronic applications that include photodetectors and photovoltaics.

Check out the article’s website on Pubmed for more information:

This article is a good source of information and a good way to become familiar with topics such as:



Categories: Science News