Science News

Polarity sorting drives remodeling of actin-myosin networks.

A new interesting article has been published in J Cell Sci. 2018 Nov 7. pii: jcs.219717. doi: 10.1242/jcs.219717. [Epub ahead of print] and titled:

Polarity sorting drives remodeling of actin-myosin networks.

Authors of this article are:

Wollrab V, Belmonte JM, Baldauf L, Leptin M, Nédeléc F, Koenderink GH.

A summary of the article is shown below:

Cytoskeletal networks of actin filaments and myosin motors drive many dynamic cell processes. A key characteristic of these networks is their contractility. Despite intense experimental and theoretical efforts, it is not clear what mechanism favors network contraction over expansion. Recent work points to a dominant role for the nonlinear mechanical response of actin filaments, which can withstand stretching but buckle upon compression. Here we present an alternative mechanism. We study how interactions between actin and myosin-2 at the single filament level translate into contraction at the network scale by performing time-lapse imaging on reconstituted quasi-2D-networks mimicking the cell cortex. We observe myosin end-dwelling after it runs processively along actin filaments. This leads to transport and clustering of actin filament ends and the formation of transiently stable bipolar structures. Further we show that myosin-driven polarity sorting produces polar actin asters, which act as contractile nodes that drive contraction in crosslinked networks. Computer simulations comparing the roles of the end-dwelling mechanism and a buckling-dependent mechanism show that the relative contribution of end-dwelling contraction increases as the network mesh-size decreases.

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as:

Actin cytoskeleton;Actin-myosin contraction;Active gel;Cell cortex;Myosin end-dwelling;Polarity sorting

.

Categories: Science News