Science News

Static Kinks or Flexible Hinges: Multiple Conformations of Bent DNA Bound to Integration Host Factor Revealed by Fluorescence Lifetime Measurements.

A new interesting article has been published in J Phys Chem B. 2018 Nov 7. doi: 10.1021/acs.jpcb.8b07405. [Epub ahead of print] and titled:

Static Kinks or Flexible Hinges: Multiple Conformations of Bent DNA Bound to Integration Host Factor Revealed by Fluorescence Lifetime Measurements.

Authors of this article are:

Connolly M, Arra A, Zvoda V, Steinbach PJ, Rice PA, Ansari A.

A summary of the article is shown below:

Gene regulation depends on proteins that bind to specific DNA sites. Such specific recognition often involves severe DNA deformations, including sharp kinks. It has been unclear how rigid or flexible these protein-induced kinks are. Here, we investigated the dynamic nature of DNA in complex with integration host factor (IHF), a nucleoid-associated architectural protein known to bend one of its cognate sites (35 base pair H’) into a U-turn by kinking DNA at two sites. We utilized fluorescence-lifetime-based FRET spectroscopy to assess the distribution of bent conformations in various IHF-DNA complexes. Our results reveal a surprisingly dynamic specific complex: while 78% of the IHF-H’ population exhibited FRET efficiency consistent with the crystal structure, 22% exhibited FRET efficiency indicative of unbent or partially bent DNA. This conformational flexibility is modulated by sequence variations in the cognate site. In another site (H1) that lacks the A-tract of H’ found on one side of the binding site, the extent of bending in the fully U-bent conformation decreased, and the population in that state decreased to 32%. A similar decrease in the U-bent population was observed with a single base mutation in H’ in a consensus region on the other side. Taken together, these results provide important insights into the finely tuned interactions between IHF and its cognate sites that keep the DNA bent (or not) and yield quantitative data on the dynamic equilibrium between different DNA conformations (kinked or not kinked) that depend sensitively on DNA sequence and deformability. Notably, the difference in dynamics between IHF-H’ and IHF-H1 reflects the different roles of these complexes in their natural context, in the phage lambda “intasome” (the complex that integrates phage lambda into the E. coli chromosome).

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as:

n/a

.

Categories: Science News