Science News

Adaptive coupling of a deep neural network potential to a classical force field.

A new interesting article has been published in J Chem Phys. 2018 Oct 21;149(15):154107. doi: 10.1063/1.5042714. and titled:

Adaptive coupling of a deep neural network potential to a classical force field.

Authors of this article are:

Zhang L, Wang H, E W.

A summary of the article is shown below:

An adaptive modeling method (AMM) that couples a deep neural network potential and a classical force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation community. The AMM simulated system is decomposed into three types of regions. The first type captures the important phenomena in the system and requires high accuracy, for which we use the Deep Potential Molecular Dynamics (DeePMD) model in this work. The DeePMD model is trained to accurately reproduce the statistical properties of the ab initio molecular dynamics. The second type does not require high accuracy, and a classical force field is used to describe it in an efficient way. The third type is used for a smooth transition between the first and the second types of regions. By using a force interpolation scheme and imposing a thermodynamics force in the transition region, we make the DeePMD region embedded in the AMM simulated system as if it were embedded in a system that is fully described by the accurate potential. A representative example of the liquid water system is used to show the feasibility and promise of this method.

Check out the article’s website on Pubmed for more information:

This article is a good source of information and a good way to become familiar with topics such as:



Categories: Science News