Science News

Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS2/Quantum Dot Phototransistors.

A new interesting article has been published in ACS Appl Mater Interfaces. 2018 Oct 19. doi: 10.1021/acsami.8b14408. [Epub ahead of print] and titled:

Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS2/Quantum Dot Phototransistors.

Authors of this article are:

Pak S, Cho Y, Hong J, Lee J, Lee S, Hou B, An GH, Lee YW, Jang JE, Im H, Morris SM, Sohn JI, Cha S, Kim JM.

A summary of the article is shown below:

Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures.

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as:

built-in potential;fast photodetectors;hybrid phototransistors;lead sulfide quantum dots;molybdenum disulfide

.

Categories: Science News