Science News

Large-scale high-density culture of hepatocytes in a liver microsystem with mimicked sinusoid blood flow.

A new interesting article has been published in J Tissue Eng Regen Med. 2018 Oct 22. doi: 10.1002/term.2758. [Epub ahead of print] and titled:

Large-scale high-density culture of hepatocytes in a liver microsystem with mimicked sinusoid blood flow.

Authors of this article are:

Liu J, Li C, Cheng S, Ya S, Gao D, Ding W.

A summary of the article is shown below:

In vitro engineering of liver tissue is a rapidly developing field for various biomedical applications. However, liver tissue culture is currently performed on only a small scale with a low density of hepatocytes. In this study, a simple design was introduced in a liver microsystem to enhance the transport of nutrients (e.g., oxygen and glucose) for the 3D large-scale, high-density culture of hepatocytes. In this design, convection across the cell culture zone was generated to mimic sinusoid blood flow (SBF) based on the pressure difference between two fluids flowing in a countercurrent manner on either side of the cell culture zone. First, the distributions of living and dead cells in different culture subzones under various perfusion flow rates were observed, analyzed, and compared. Then, the enhanced transport of nutrients was experimentally validated in relation to the viability of cells and theoretically explained by comparing the fluid velocity and oxygen concentration distribution in the cell culture zone in counterflow and coflow modes. Finally, the functions of the SBF-mimicked liver microsystem were assessed based on specific metabolites, synthesized proteins, and bilirubin detoxification of hepatocytes, with collagen and alginate as ECMs. Under this design, the density of hepatocytes cultured at the 3-mm-thickness scale reached ~7×107 cells/mL on day 7, and the metabolism and detoxification functions of the cells worked well. In addition, a liver rope-like structure and sphere-like clusters of cells were observed. This work provides insight for the design of a bionic liver microsystem.

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as:

3D cell culture;high density;large scale;liver microsystem;nutrient transport;sinusoid blood flow

.

Categories: Science News